Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Pharmacol ; 208: 115401, 2023 02.
Article in English | MEDLINE | ID: covidwho-2246221

ABSTRACT

Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Single-Domain Antibodies/therapeutic use , COVID-19/prevention & control , Epitopes , Antibodies, Neutralizing/therapeutic use
2.
Emerg Med Int ; 2021: 7711056, 2021.
Article in English | MEDLINE | ID: covidwho-1526555

ABSTRACT

This study analyzed the risk factors for patients with COVID-19 developing severe illnesses and explored the value of applying the logistic model combined with ROC curve analysis to predict the risk of severe illnesses at COVID-19 patients' admissions. The clinical data of 1046 COVID-19 patients admitted to a designated hospital in a certain city from July to September 2020 were retrospectively analyzed, the clinical characteristics of the patients were collected, and a multivariate unconditional logistic regression analysis was used to determine the risk factors for severe illnesses in COVID-19 patients during hospitalization. Based on the analysis results, a prediction model for severe conditions and the ROC curve were constructed, and the predictive value of the model was assessed. Logistic regression analysis showed that age (OR = 3.257, 95% CI 10.466-18.584), complications with chronic obstructive pulmonary disease (OR = 7.337, 95% CI 0.227-87.021), cough (OR = 5517, 95% CI 0.258-65.024), and venous thrombosis (OR = 7322, 95% CI 0.278-95.020) were risk factors for COVID-19 patients developing severe conditions during hospitalization. When complications were not taken into consideration, COVID-19 patients' ages, number of diseases, and underlying diseases were risk factors influencing the development of severe illnesses. The ROC curve analysis results showed that the AUC that predicted the severity of COVID-19 patients at admission was 0.943, the optimal threshold was -3.24, and the specificity was 0.824, while the sensitivity was 0.827. The changes in the condition of severe COVID-19 patients are related to many factors such as age, clinical symptoms, and underlying diseases. This study has a certain value in predicting COVID-19 patients that develop from mild to severe conditions, and this prediction model is a useful tool in the quick prediction of the changes in patients' conditions and providing early intervention for those with risk factors.

3.
Polymers (Basel) ; 13(16)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1341707

ABSTRACT

The outbreak of COVID-19 has already generated a huge societal, economic and political losses worldwide. The present study aims to investigate the antiviral activity of Poly(hexamethylene biguanide) hydrochloride (PHMB) treated fabric against COVID-19 by using the surrogate Feline coronavirus. The antiviral analysis indicated that up to 94% of coronavirus was killed after contacting the CVC fabric treated with PHMB for 2 h, which suggests that PHMB treated fabric could be used for developing protective clothing and beddings with antiviral activity against coronavirus and can play a role in fighting the transmission of COVID-19 in the high-risk places.

4.
Polymers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1288978

ABSTRACT

The spread of COVID-19 has brought about huge losses around the world. This study aims to investigate the applicability of PHMB used for developing antiviral spandex clothing against coronavirus. PHMB was qualitatively determined on the surface of spandex fabrics by using BPB. The antiviral analysis shows that the PHMB-treated spandex fabric can kill 99% of the coronavirus within 2 h of contact, which suggests that the spandex fabric treated with PHMB could be used for developing antiviral clothing against coronaviruses for containing the transmission of COVID-19 in high-risk places. Furthermore, PHMB-treated spandex fabrics were shown excellent antibacterial activity against gram-positive S. aureus and gram-negative K. pneumoniae. The hand feel properties of Spandex fabric were not significantly affected by the PHMB coating in addition to the wrinkle recovery, which was obviously improved after PHMB coating.

SELECTION OF CITATIONS
SEARCH DETAIL